342 research outputs found

    Culture change in a professional sports team: Shaping environmental contexts and regulating power

    Get PDF
    Although high performing cultures are crucial for the enduring success of professional sport performance teams, theoretical and practical understanding of how they are established and sustained is lacking. To develop knowledge in this area, a case study was undertaken to examine the key mechanisms and processes of a successful culture change programme at English Rugby Union’s Leeds Carnegie. Exploring the change process from a 360 degree perspective, semi-structured interviews were conducted with team management, one specialist coach, six players, and the CEO. Analysed and explained through decentred theory, results revealed that culture change was effectively facilitated by team management: a) subtly and covertly shaping the physical, structural, and psychosocial context in which support staff and players made performance-impacting choices, and b) regulating the ‘to and fro’ of power which characterises professional sport performance teams. Decentred theory is also supported as an effective framework for culture change study

    Electric field and exciton structure in CdSe nanocrystals

    Full text link
    Quantum Stark effect in semiconductor nanocrystals is theoretically investigated, using the effective mass formalism within a 4×44\times 4 Baldereschi-Lipari Hamiltonian model for the hole states. General expressions are reported for the hole eigenfunctions at zero electric field. Electron and hole single particle energies as functions of the electric field (EQD\mathbf{E}_{QD}) are reported. Stark shift and binding energy of the excitonic levels are obtained by full diagonalization of the correlated electron-hole Hamiltonian in presence of the external field. Particularly, the structure of the lower excitonic states and their symmetry properties in CdSe nanocrystals are studied. It is found that the dependence of the exciton binding energy upon the applied field is strongly reduced for small quantum dot radius. Optical selection rules for absorption and luminescence are obtained. The electric-field induced quenching of the optical spectra as a function of EQD\mathbf{E}_{QD} is studied in terms of the exciton dipole matrix element. It is predicted that photoluminescence spectra present anomalous field dependence of the emission lines. These results agree in magnitude with experimental observation and with the main features of photoluminescence experiments in nanostructures.Comment: 9 pages, 7 figures, 1 tabl

    Statistical properties of the Burgers equation with Brownian initial velocity

    Full text link
    We study the one-dimensional Burgers equation in the inviscid limit for Brownian initial velocity (i.e. the initial velocity is a two-sided Brownian motion that starts from the origin x=0). We obtain the one-point distribution of the velocity field in closed analytical form. In the limit where we are far from the origin, we also obtain the two-point and higher-order distributions. We show how they factorize and recover the statistical invariance through translations for the distributions of velocity increments and Lagrangian increments. We also derive the velocity structure functions and we recover the bifractality of the inverse Lagrangian map. Then, for the case where the initial density is uniform, we obtain the distribution of the density field and its nn-point correlations. In the same limit, we derive the n−n-point distributions of the Lagrangian displacement field and the properties of shocks. We note that both the stable-clustering ansatz and the Press-Schechter mass function, that are widely used in the cosmological context, happen to be exact for this one-dimensional version of the adhesion model.Comment: 42 pages, published in J. Stat. Phy

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.

    Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA

    Get PDF
    Differential inclusive jet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector. Three phase-space regions have been selected in order to study parton dynamics where the effects of BFKL evolution might be present. The measurements have been compared to the predictions of leading-logarithm parton shower Monte Carlo models and fixed-order perturbative QCD calculations. In the forward region, QCD calculations at order alpha_s^1 underestimate the data up to an order of magnitude at low x. An improved description of the data in this region is obtained by including QCD corrections at order alpha_s^2, which account for the lowest-order t-channel gluon-exchange diagrams, highlighting the importance of such terms in parton dynamics at low x.Comment: 25 pages, 4 figure

    Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box

    Full text link
    We present a method for measuring the cosmic matter budget without assumptions about speculative Early Universe physics, and for measuring the primordial power spectrum P*(k) non-parametrically, either by combining CMB and LSS information or by using CMB polarization. Our method complements currently fashionable ``black box'' cosmological parameter analysis, constraining cosmological models in a more physically intuitive fashion by mapping measurements of CMB, weak lensing and cluster abundance into k-space, where they can be directly compared with each other and with galaxy and Lyman alpha forest clustering. Including the new CBI results, we find that CMB measurements of P(k) overlap with those from 2dF galaxy clustering by over an order of magnitude in scale, and even overlap with weak lensing measurements. We describe how our approach can be used to raise the ambition level beyond cosmological parameter fitting as data improves, testing rather than assuming the underlying physics.Comment: Replaced to match accepted PRD version. Refs added. Combined CMB data and window functions at http://www.hep.upenn.edu/~max/pwindows.html or from [email protected]. 18 figs, 19 journal page

    Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Get PDF
    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed
    • 

    corecore